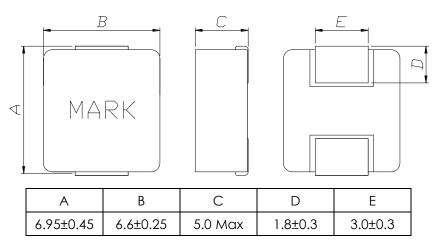
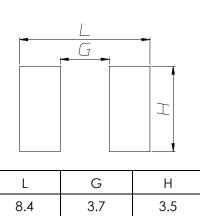


CMI-MMPP6050LH-N SERIES

Features


- ► High current and low profile
- ▶ Metal powder molding type for EMC protection.
- ▶ Available tape and reel for auto insertion.
- ► Halogen-Free / RoHS compliant.


Applications

► For DC/DC converter, AV equipment digital consumer electronics

Dimension (Unit:mm)

Land Pattern (Unit:mm)

Regulation of part number

- 1 CoilMaster's initial
- 2) Series Name: Magic Material Pin type Power inductor
- 3 Core Size (unit:mm)
- 4 Material
- (5) Typical inductance value (0.68uH)
- 6 Inductance tolerance (±20%)
- 7 Revision (N)
- You can also contact us by e-mail: coilmaster@coilmaster.com
- All specifications are subject to change without notice.
- Update date: 2020.09.28

Specifications

Part Number	Inductance (uH) ±20%	DCR(mohm) Max(Typ)	IDC1(A) Max(Typ)	IDC2(A) Max(Typ)	Test Frequency (Hz)
CMI-MMPP6050LH-R68M-N	0.68	4.8(4.0)	22.00(27.00)	14.20(14.70)	1 <i>M</i>
CMI-MMPP6050LH-R82M-N	0.82	7.2(6.0)	21.00(26.00)	14.00(14.50)	1 <i>M</i>

- IDC1: When based on the inductance change rate (approximately 30% below in the initial value)
- IDC2: When based on the temperature increase (Temperature increase of approximately 40°c by self heating)
- Operating Temperature Range (including self temperature): -40°c ~ +125°c

Note 1 : Circuit design, component placement, PCB trace size and thickness, airflow and other cooling. Provision all affect the part Temperature. Part temperature should be verified in the end application.

• All specifications are subject to change without notice.

• Update date : 2020.09.28